Seq2Seq or Perceptrons for robust Lemmatization. An empirical examination.

Tobias Pütz, Daniël de Kok, Sebastian Pütz, Erhard Hinrichs

SFB833 A3 University of Tübingen

TLT17 Oslo, December 14, 2018

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ = の Q @ 1/23

What's the takeaway?

- High performance Lemmatization: both linear edit-tree classification and neural Seq2Seq methods are highly competitive methods for lemmatization.
- Classification: predefined search space + explicit vocabulary help with language variation
- Seq2Seq: fine-grained character representations allow for better generalization to unknown items

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 2/23

Our Background

TüBa-D/DP: automatically annotated treebank for German:

- 28.6 billion tokens (Wikipedia, TAZ, Europarl, Common Crawl)
- Annotations: dependency relations, topological fields, POS, morphological tags and lemmas
- Current lemmatizer: Lemming (Müller et al., 2015)
- Task at hand: examine and compare robustness of recent neural methods with Lemming

<□ > < @ > < ≧ > < ≧ > ≧ > り < ? 3/23

Data

1	Form: Features: Lemma:	<i>interessante</i> Adjective.accusative.plural.feminine <i>interessant</i> 'interesting'
2	Form: Features: Lemma:	<i>führten</i> Finite Verb.3.indicative.past <i>führen</i> 'to lead'
3	Form: Features: Lemma:	<i>gelacht</i> Perfect Participle <i>lachen</i> 'to laugh'

Data

1	Form: Features: Lemma:	<i>interessante</i> Adjective.accusative.plural.feminine <i>interessant</i> 'interesting'
2	Form: Features: Lemma:	<i>führten</i> Finite Verb.3.indicative.past <i>führen</i> 'to lead'
3	Form: Features: Lemma:	<i>gelacht</i> Perfect Participle <i>lachen</i> 'to laugh'

 Irregular forms cannot be predicted and need to be dealt with seperately.

Dealing with non-standard language Data

In compliance with $T\ddot{u}Ba-D/Z$ guidelines:

Spelling errors in the form should be corrected in the lemma:

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 5/23

▶ *uneingeschänkt → uneingeschränkt 'unlimited'

Dealing with non-standard language Data

In compliance with $T\ddot{u}Ba-D/Z$ guidelines:

Spelling errors in the form should be corrected in the lemma:

▶ *uneingeschänkt → uneingeschränkt 'unlimited'

Language variation should be reduced to the lemma of the canonical form with a trailing underscore:

<□ > < 圖 > < 圖 > < 圖 > < 圖 > < 圖 > < ■ > < ■ < 5/23</p>

koscht → kosten_ 'to cost'

Edit-scripts and Seq2Seq

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Edit-script classifier Chrupała (2006); Chrupała et al. (2008) Müller et al. (2015)

ge	arbeite	t
	arbeite	п
$del(\mathbf{ge})$	match	<pre>subst(t,n)</pre>

<□ > < @ > < ≧ > < ≧ > ≧ り < ♡ 7/23

1) For each form-lemma pair:

derive edit-scripts by aligning form-lemma pairs

Edit-script classifier Chrupała (2006); Chrupała et al. (2008)

Müller et al. (2015)

ge	arbeite	t
	arbeite	п
$del(\mathbf{ge})$	match	<pre>subst(t,n)</pre>

<ロ > < 母 > < 量 > < 量 > < 量 > 量 の < で 7/23

1) For each form-lemma pair:

derive edit-scripts by aligning form-lemma pairs

2 For each form:

- 1 create candidate set by applying all edit-scripts
- 2 perform classification over candidate set

Edit-script classifier Chrupała (2006); Chrupała et al. (2008)

Müller et al. (2015)

ge	arbeite	t
	arbeite	п
$del(\mathbf{ge})$	match	<pre>subst(t,n)</pre>

1) For each form-lemma pair:

derive edit-scripts by aligning form-lemma pairs

2 For each form:

- 1 create candidate set by applying all edit-scripts
- 2 perform classification over candidate set

include candidate lemma features

- mostly linear classifiers
- rely on engineered features

Sutskever et al. (2014)

Der Hund jagte den Hasen.

The dog chased the rabbit.

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 8/23

Seq2Seq: state-of-the-art results on many sequence transduction tasks.

Sutskever et al. (2014)

Der Hund jagte den Hasen.

The dog chased the rabbit.

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 8/23

Seq2Seq: state-of-the-art results on many sequence transduction tasks.

little/no feature engineering: features other than surface form are mostly basic linguistic units

Sutskever et al. (2014)

Der Hund jagte den Hasen.

The dog chased the rabbit.

Seq2Seq: state-of-the-art results on many sequence transduction tasks.

- little/no feature engineering: features other than surface form are mostly basic linguistic units
- fine-grained: character-based representation helps to generalize to unseen combinations

Seq2Seq in 5 minutes

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ⊇ < つ < ⊙ < ⊙ < 2/23

The encoder Seq2Seq in 5 minutes

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 10/23

Encodes a form of arbitrary length into a fixed size vector:

 Input: characters mapped to real valued vectors (embeddings)

The encoder Seq2Seq in 5 minutes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 10/23

Encodes a form of arbitrary length into a fixed size vector:

- Input: characters mapped to real valued vectors (embeddings)
- Processor: Recurrent Neural Network
 - reads one character per step
 - maintains hidden state by composing it from current input and previous state

The encoder Seq2Seq in 5 minutes

◆□▶ ◆母▶ ◆ 臣▶ ◆ 臣▶ 臣 の Q @ 10/23

Encodes a form of arbitrary length into a fixed size vector:

- Input: characters mapped to real valued vectors (embeddings)
- Processor: Recurrent Neural Network
 - reads one character per step
 - maintains hidden state by composing it from current input and previous state

Output:

- intermediate states
- final state

The decoder Seq2Seq in 5 minutes $(enc_n) - - \rightarrow (dec_0)$

Decodes the final state of the encoder into a lemma of arbitrary length:

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 11/23

▶ Initial state: final state of the encoder

- Initial state: final state of the encoder
- First input: a special start symbol

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 11/23

- Initial state: final state of the encoder
- First input: a special start symbol
- Output: probability distribution over characters

- Initial state: final state of the encoder
- First input: a special start symbol
- Output: probability distribution over characters
- Subsequent inputs: highest scoring character form previous step

- Initial state: final state of the encoder
- First input: a special start symbol
- Output: probability distribution over characters
- Subsequent inputs: highest scoring character form previous step

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 11/23

- Initial state: final state of the encoder
- First input: a special start symbol
- Output: probability distribution over characters
- Subsequent inputs: highest scoring character form previous step
- Terminates: when the end symbol is predicted

Seq2Seq in 5 minutes

Encoder-RNN

Decoder-RNN

Seq2Seq in 5 minutes

Attention

Encoder-RNN

Decoder-RNN

Bahdanau et al. (2014); Luong et al. (2015)

Setup

We compare three models on German:

- Ohnomore_{seq2seq} (Oh-Morph): attentional Seq2Seq over characters with a morphologically informed decoder
- Lemming: linear edit-tree classifier (Müller et al., 2015)
 Lemming-Base: built-in features
 Lemming-List: built-in features + external word list
- Further information on the setup can be found in the TLT paper and my BA thesis (Pütz, 2018).¹

¹available at http://sfs.uni-tuebingen.de≠~tpuetz/≧ > < ≧ → A C _{13/23}

Type: a unique combination of form, features and lemma

Example:

Form:interessanteFeatures:Adjective.accusative.plural.feminineLemma:interessant 'interesting'

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ の へ P 14/23

Type: a unique combination of form, features and lemma

Example:

Form:	interessante
Features:	Adjective.accusative.plural.feminine
Lemma:	<i>interessant</i> 'interesting'

Train and test set are disjoint sets of types to ensure that the models are not just memorizing form-feature-lemma combinations.

Results

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ○ Q ↔ 15/23

General Results - TüBa-D/Z

Accuracy on types:

Model	TüBa-D/Z
Oh-Morph	97.00%
Lemming-Base	96.78%
Lemming-List	97 .02%

- slight difference between Lemming-List and Oh-Morph
- the extended vocabulary of Lemming-List provides a boost of 0.24% over Lemming-Base

Out-of-vocabulary Analysis

Out-of-vocabulary Analysis

 Oh-Morph: highest accuracy across all out-of-vocabulary items

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 17/23

Out-of-vocabulary Analysis

- Oh-Morph: highest accuracy across all out-of-vocabulary items
- Lemming: dependence on completeness of vocabulary
 - List: worse performance than Lemming-Base on out-of-list items
 - Base: similar to Oh-Morph on out-of-list items but falls behind on out-of-train-vocab items

We analyze the two partitions of the test results:

1 Shared: all three models produced the same lemma

Examples:

	Form	Lemma	Oh-Morph	Lemming-List	Lemming-Base
Shared	gearbeitet	<i>arbeiten</i> 'to work'	arbeiten	arbeiten	arbeiten

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 18/23

We analyze the two partitions of the test results:

- 1 Shared: all three models produced the same lemma
- 2 Unique: at least one model made a unique prediction

Examples:

	Form	Lemma	Oh-Morph	Lemming-List	Lemming-Base
Shared	gearbeitet	<i>arbeiten</i> 'to work'	arbeiten	arbeiten	arbeiten
Unique	Soloalben	Soloalbum 'solo album'	Soloalbum	Soloalbum	*Soloalbe

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E ∽ Q (~ 18/23

Word list: helps with misspelled forms but misspelling is still the biggest error source.

unique: Lemming-List 50% less errors than Lemming-Base and Oh-Morph

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ りへで 19/23

shared: misspelling > 30% of errors

Language Variation Analysis

Explicit vocabulary helps but no model suited for the task:

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 20/23)

- unique:
 - both Lemming models 70% error rate
 - Oh-Morph 85% error rate
- shared: 68% error rate

Language Variation Analysis

Explicit vocabulary helps but no model suited for the task:

- unique:
 - both Lemming models 70% error rate
 - Oh-Morph 85% error rate
- **shared:** 68% error rate
- more domain specific training data and sentential context necessary

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 20/23

Language Variation Analysis

Explicit vocabulary helps but no model suited for the task:

- unique:
 - both Lemming models 70% error rate
 - Oh-Morph 85% error rate
- shared: 68% error rate
- more domain specific training data and sentential context necessary
- fuzzy line between spelling errors and language variation

Conclusion and Outlook

Conclusion

- Seq2Seq and edit-tree classifier have different strengths
- featurizing a candidate set helps with spelling variation
- character-based Seq2Seq generalizes well to unseen items

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 21/23

Outlook

- use the complementary strengths in an ensemble
- joint lemmatization and text normalization

Work in progress

Two directions:

combination of bi- and uni-directionality in the encoder gives promising results

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q @ 22/23

neural edit-tree classifier

Thank you!

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • • • ○ へ ○ 23/23

Partitions Analysis

1 Shared: (207,627 types) all models produced the same lemma:

Error rate: 1.60% (# 3322)

2 Unique: (6,078 types) at least one model produced a unique lemma

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 23/23

- ▶ **Oh-Morph:** 50.80% (# 3087)
- ▶ Lemming-Base: 58.65% (# 3565)
- Lemming-List: 50.20% (# 3051)

Unknowns

Vocab	Туре	Oh-Morph	Lemming-Base	Lemming-List
Train	Form	95.74%	95.21%	95.62%
Irdiii	Lemma	96 .32%	96.04%	95.98%
Lict	Form	94.34%	94.27%	94.20%
LISL	Lemma	96.48%	96.47%	95.70%

Irregular Forms

Examples:

	Form:	bot
1	Features:	Finite Verb.3.indicative.past
	Lemma:	<i>bieten</i> 'to bid'

	Form:	darf
2	Features:	Finite Verb.3.indicative.past
	Lemma:	<i>dürfen</i> 'be allowed to'

What people do:

- 1 Dictionary: complement lemmatizer with a dictionary
- **2 Overlapping train-validation sets:** effectively treating the training set as a dictionary
- **Both:** coverage is limited to dictionary / training data