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What's the takeaway?

» High performance Lemmatization: both linear edit-tree
classification and neural Seq2Seq methods are highly
competitive methods for lemmatization.

» Classification: predefined search space + explicit vocabulary
help with language variation

> Seq2Seq: fine-grained character representations allow for
better generalization to unknown items



Our Background

TiiBa-D/DP: automatically annotated treebank for German:

» 28.6 billion tokens (Wikipedia, TAZ, Europarl, Common
Crawl)

» Annotations: dependency relations, topological fields, POS,
morphological tags and lemmas

» Current lemmatizer: Lemming (Miller et al., 2015)

» Task at hand: examine and compare robustness of recent
neural methods with Lemming



Data

Form:

Features:

Lemma:

Form:

Features:

Lemma:

Form:

Features:

Lemma:

interessante
Adjective.accusative.plural.feminine
interessant ‘interesting’

flihrten
Finite Verb.3.indicative.past
flihren ‘to lead’

gelacht
Perfect Participle
lachen ‘to laugh’



Data

Form: interessante

@ Features: Adjective.accusative.plural.feminine
Lemma:  interessant ‘interesting’
Form: flihrten

® Features: Finite Verb.3.indicative.past
Lemma: fiihren ‘to lead’
Form: gelacht

©® Features: Perfect Participle
Lemma:  /achen ‘to laugh’

> Irregular forms cannot be predicted and need to be dealt
with seperately.



Dealing with non-standard language
Data

In compliance with TiBa-D/Z guidelines:
» Spelling errors in the form should be corrected in the lemma:
» *uneingeschinkt — uneingeschrankt ‘unlimited’



Dealing with non-standard language
Data

In compliance with TiBa-D/Z guidelines:
» Spelling errors in the form should be corrected in the lemma:
» *uneingeschinkt — uneingeschrankt ‘unlimited’

» Language variation should be reduced to the lemma of the
canonical form with a trailing underscore:

» koscht — kosten_ ‘to cost’



Edit-scripts and Seq2Seq
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Edit-script classifier
Chrupata (2006); Chrupata et al. (2008)

arbeite t
arbeite n

Miiller et al. (2015) ge

del(ge) | match | subst(t,n)

® For each form-lemma pair:
» derive edit-scripts by aligning form-lemma pairs

® For each form:

@ create candidate set by applying all edit-scripts
® perform classification over candidate set

» include candidate lemma features
» mostly linear classifiers

> rely on engineered features
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Seq2Seq

Sutskever et al. (2014
( ) Der Hund jagte den Hasen.

The dog chased the rabbit.

Seq2Seq: state-of-the-art results on many sequence transduction
tasks.

> little/no feature engineering: features other than surface
form are mostly basic linguistic units

> fine-grained: character-based representation helps to
generalize to unseen combinations
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The encoder
Seq2Seq in 5 minutes

Encodes a form of arbitrary length into a fixed size vector:

» Input: characters mapped to real valued vectors
(embeddings)

» Processor: Recurrent Neural Network

» reads one character per step
» maintains hidden state by composing it from current input
and previous state

» Qutput:
P> intermediate states
» final state



The decoder

Seq2Seq in 5 minutes ——

Decodes the final state of the encoder into a lemma of arbitrary
length:

» Initial state: final state of the encoder
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The decoder ?

Seq2Seq in 5 minutes ——
D

<GO>

Decodes the final state of the encoder into a lemma of arbitrary
length:

> Initial state: final state of the encoder
» First input: a special start symbol

» Qutput: probability distribution over characters



The decoder
Seq2Seq in 5 minutes m {deco]—'-{decl]
oo | 0
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Decodes the final state of the encoder into a lemma of arbitrary
length:

> Initial state: final state of the encoder
» First input: a special start symbol
» Qutput: probability distribution over characters

» Subsequent inputs: highest scoring character form previous
step



The decoder d | e VT
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Decodes the final state of the encoder into a lemma of arbitrary
length:

> Initial state: final state of the encoder
» First input: a special start symbol
» Qutput: probability distribution over characters

» Subsequent inputs: highest scoring character form previous
step
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The decoder d e
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Decodes the final state of the encoder into a lemma of arbitrary
length:

> Initial state: final state of the encoder
» First input: a special start symbol
» Qutput: probability distribution over characters

» Subsequent inputs: highest scoring character form previous
step

> Terminates: when the end symbol is predicted



Seq2Seq in 5 minutes
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Seq2Seq in 5 minutes

Attention
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Encoder-RNN
Bahdanau et al. (2014); Luong et al. (2015)

Decoder-RNN



Setup

We compare three models on German:

» Ohnomoregoseq (Oh-Morph): attentional Seq2Seq over
characters with a morphologically informed decoder

» Lemming: linear edit-tree classifier (Mller et al., 2015)

» Lemming-Base: built-in features
» Lemming-List: built-in features + external word list

» Further information on the setup can be found in the
TLT paper and my BA thesis (Piitz, 2018).}

'available at http://sfs.uni-tuebingen.de/~tpuetz/
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Types
Setup

> Type: a unique combination of form, features and lemma

> Example:
Form: interessante
Features: Adjective.accusative.plural.feminine
Lemma: interessant ‘interesting’

» Train and test set are disjoint sets of types to ensure that
the models are not just memorizing form-feature-lemma
combinations.



Results



General Results - TiBa-D/Z

» Accuracy on types:

Model TiiBa-D/Z
Oh-Morph 97.00%
Lemming-Base 96.78%
Lemming-List 97.02%

> slight difference between Lemming-List and Oh-Morph

» the extended vocabulary of Lemming-List provides a boost of
0.24% over Lemming-Base
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Out-of-vocabulary
Analysis

» Vocabs: train and list

» Oh-Morph: highest accuracy across all out-of-vocabulary
items

» Lemming: dependence on completeness of vocabulary

» List: worse performance than Lemming-Base on out-of-list
items

» Base: similar to Oh-Morph on out-of-list items but falls
behind on out-of-train-vocab items



Partitions
Analysis

We analyze the two partitions of the test results:

@ Shared: all three models produced the same lemma

Examples:
‘Form Lemma ‘Oh-Morph Lemming-List Lemming-Base

Shared | gearbeitet arbeiten ‘to work’ | arbeiten arbeiten arbeiten



Partitions
Analysis

We analyze the two partitions of the test results:

@ Shared: all three models produced the same lemma

® Unique: at least one model made a unique prediction

Examples:
‘ Form Lemma ‘ Oh-Morph Lemming-List Lemming-Base
Shared | gearbeitet arbeiten ‘to work’ arbeiten arbeiten arbeiten

Unique | Soloalben  Soloalbum 'solo album’ | Soloalbum  Soloalbum *Soloalbe



Spelling
Analysis

Word list: helps with misspelled forms but misspelling is still the
biggest error source.

» unique: Lemming-List 50% less errors than Lemming-Base
and Oh-Morph

» shared: misspelling > 30% of errors
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» both Lemming models 70% error rate
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Language Variation
Analysis

Explicit vocabulary helps but no model suited for the task:
P> unique:

» both Lemming models 70% error rate
» Oh-Morph 85% error rate

» shared: 68% error rate
» more domain specific training data and sentential context

necessary

» fuzzy line between spelling errors and language variation



Conclusion and Outlook

Conclusion

> Seq2Seq and edit-tree classifier have different strengths
> featurizing a candidate set helps with spelling variation

» character-based Seq2Seq generalizes well to unseen items

Outlook

P> use the complementary strengths in an ensemble

P joint lemmatization and text normalization



Work in progress

Two directions:

> combination of bi- and uni-directionality in the encoder
gives promising results

» neural edit-tree classifier



Thank you!



Partitions
Analysis

@ Shared: (207,627 types) all models produced the same
lemma:

> Error rate: 1.60% (# 3322)

® Unique: (6,078 types) at least one model produced a unique
lemma

» Oh-Morph: 50.80% (# 3087)
» Lemming-Base: 58.65% (# 3565)

» Lemming-List: 50.20% (# 3051)



Unknowns

Vocab | Type Oh-Morph Lemming-Base Lemming-List

Train Form 95.74% 95.21% 95.62%
Lemma 96.32% 96.04% 95.98%
Form 94.34% 94.27% 94.20%

List

Lemma 96.48% 96.47% 95.70%



Irregular Forms

Examples:
Form: bot
@ Features: Finite Verb.3.indicative.past
Lemma: bieten ‘to bid’
Form: darf
® Features: Finite Verb.3.indicative.past
Lemma: diirfen 'be allowed to’

What people do:

@ Dictionary: complement lemmatizer with a dictionary

® Overlapping train-validation sets: effectively treating the
training set as a dictionary

» Both: coverage is limited to dictionary / training data



